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Introduction

A fundamental challenge in studies of human health and its 
derangement or pathology is elucidating the molecular, bio-
energetic and anatomical basis of homeostatic imbalance. 
Homeostasis, a term first introduced by Claude Bernard in the 
1860s, is a biological system’s ability to maintain a relatively stable 
internal milieu in a fluctuating external environment.1 Cells, as 
the structural and functional units of tissues and organs, must 
maintain homeostasis in response to various physiological and 
pathological stressors. How a cell maintains homeostasis in the 
face of stress or damage is briefly reviewed here. We provide a brief 
overview of the process and function of adaptation to such stress-
ors and focus on the complex relationship between autophagy and 
DAMPs in the cellular response to injury and death (Fig. 1).

Cellular Adaptation, Injury and Cell Death

To maintain a stable intracellular environment, cells can respond 
to physiological stressors or pathological stimuli in various ways, 
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Autophagy is a lysosome-mediated catabolic process 
involving the degradation of intracellular contents (e.g., 
proteins and organelles) as well as invading microbes (e.g., 
parasites, bacteria and viruses). Multiple forms of cellular stress 
can stimulate this pathway, including nutritional imbalances, 
oxygen deprivation, immunological response, genetic defects, 
chromosomal anomalies and cytotoxic stress. Damage-
associated molecular pattern molecules (DAMPs) are released 
by stressed cells undergoing autophagy or injury, and act 
as endogenous danger signals to regulate the subsequent 
inflammatory and immune response. A complex relationship 
exists between DAMPs and autophagy in cellular adaption 
to injury and unscheduled cell death. Since both autophagy 
and DAMPs are important for pathogenesis of human disease, 
it is crucial to understand how they interplay to sustain 
homeostasis in stressful or dangerous environments.
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ranging from the activation of survival pathways to the initia-
tion of cell death.2,3 This response causes changes in the number, 
size, morphology and types of cells within tissues to maintain 
viability and function. These processes, collectively called cel-
lular adaptation, include atrophy (decrease in cell size), hypertro-
phy (increase in cell size), hyperplasia (increase in cell number), 
and metaplasia (change in cell type). Physiological adaptation 
includes responses of cells to stimulation by hormones or endog-
enous chemical mediators, whereas pathological adaptation usu-
ally represents a response to stress that allows cells to modulate 
their structure and function and thus limit damage and initiate 
repair. Reversible injury is usually mild, and following removal of 
the adverse influence, the cell reverts to its normal steady-state. If 
it cannot recover, the cell either enters a period of senescence or 
progresses to cell death.

Many types of cell death are described, including necrosis, 
necroptosis, pyroptosis, entosis and apoptosis,4,5 as well as the 
recently identified ferroptosis, an iron-dependent form of non-
apoptotic cell death.6 Cell death can be classified according to its 
morphological appearance, enzymological criteria and functional 
aspects, or its immunological characteristics.4,5 Although several 
common biochemical events are observed in the process of cell 
death, the mechanisms leading to cell death caused by individual 
stressors may vary. Of note, many proteins currently assumed to 
be cell death proteins have distinctly different functions, includ-
ing prosurvival roles.7 For example, CASP8, the initiator caspase 
of the death receptor pathway of apoptosis, has significant non-
apoptotic roles in embryonic development and prosurvival func-
tions.8-10 Deletion of the apoptotic gene can, in some instances, 
promote tumorigenesis.11 In addition, apoptotic cells not only 
suppress, but also promote an inflammatory response, which 
is dependent on the context of the tissue microenvironment in 
which cell death occurs.12,13

Autophagy: A Multifaceted Lysosomal Degradation 
System for Bulk and Selective Recycling

The two major intracellular degradation systems are the ubiq-
uitin-proteasome system and autophagy. The ubiquitin-protea-
some system is used for rapid degradation of proteins, whereas 
autophagy is primarily responsible for the lysosomal degrada-
tion of long-lived proteins and damaged organelles. The term 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

452 Autophagy Volume 9 Issue 4

autolysosomes, have distinct morphologies and their formation is 
primarily controlled by members of the autophagy-related (Atg) 
proteins,15 most of which were initially identified in yeast. The 
origin of the autophagosomal membrane includes the plasma 
membrane, the endoplasmic reticulum, mitochondria and the 
Golgi apparatus.16

Autophagy is not only a nonselective bulk degradative pathway, 
but also a selective pathway. Selective autophagy such as mitoph-
agy (degradation of mitochondria)17 and xenophagy (degradation 
of intracellular pathogens)18 is mediated by specific autophagic 
adaptor proteins (e.g., sequestosome 1 [SQSTM1/p62], BCL2/
adenovirus E1B interacting protein 3-like [BNIP3L/NIX], cal-
cium binding and coiled-coil domain 2 [CALCOCO2/ NDP52], 
neighbor of BRCA1 gene 1 [NBR1], optineurin [OPTN], and 

“autophagy” is derived from the Greek words “phagy” meaning 
eat and “auto” meaning self. Christian de Duve, a Nobel Prize-
winning cytologist and biochemist, first coined the term “auto-
phagy” in 1963 following electron microscopy morphological 
observations.14 Autophagy is an evolutionarily conserved, mul-
tistep, degradative process conserved among yeast, plant and 
animal cells. In mammalian cells, types of autophagy include 
macroautophagy (hereafter referred to as autophagy), chaperone-
mediated autophagy and microautophagy, which are frequently 
interconnected and share several common components. In gen-
eral, autophagy is the cellular catabolic process that leads to the 
removal of damaged biological macromolecules and organelles 
through engulfment and fusion with lysosomes. The auto-
phagic structures, including phagophores, autophagosomes and 

Figure 1. Cellular response to stress and injurious stimuli. When cells are faced with physiological or pathological stresses, they can undergo adapta-
tion, achieving a new steady-state and preserving viability and function. Induction of autophagy and DAMPs release are stress responses to injury. If 
the adaptive capability is exceeded or if the external stress is inherently harmful, cell injury or death develops.
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explore the mechanisms of DAMP release and assess their benefi-
cial or maladaptive biological roles in the setting of disease.

Autophagy-Mediated DAMP Release and Degradation

The release of DAMPs as soluble messengers is a fundamental 
mechanism for cell-to-cell communication and regulation within 
the immune system during stress. Most cellular DAMPs are 
released by a nonclassical or unconventional secretory route in 
which they are released through the plasma membrane without 
passing through the traditional secretory protein route, including 
the Golgi complex.40,41 Recently, multiple nonconventional trans-
port pathways have been invoked, including secretory lysosomes, 
endosomes, membrane blebbing, multivesicular body-derived 
exosomes, ABC transporters and autophagy42-44 as vehicles for 
exteriorizing following cell stress without cell death, necessarily. 
Increasing evidence indicates that autophagy regulates release 
and degradation of DAMPs including HMGB1, ATP, IL1B, and 
DNA in several cell types (Fig. 2).

HMGB1. HMGB1, an abundant chromatin-binding protein, 
is the best-characterized DAMP.36,45 It can be released from dying 
cells (e.g., necrosis and late-stages of apoptosis) and activated 
immune cells [macrophages, neutrophils, eosinophils, natural 
killer cells, dendritic cells (DCs), and platelets], and mediates the 
response to infection, injury, and inflammation. HMGB1 release 
is regulated by post-translational modification (e.g., acetylation, 
phosphorylation, ADP ribosylation and redox modulation) and 
activation of signal transduction pathways (e.g., mitogen-acti-
vated protein kinase and double-stranded RNA-activated protein 
kinase), and vesicle-mediated lysosome exocytosis. We and others 
have demonstrated that autophagy regulates the release and secre-
tion of HMGB1 in several cell types in response to starvation, 
cytotoxic drugs, and PAMPs (Fig. 2A).46-49 Reactive oxygen spe-
cies (ROS)-dependent signals are required for autophagy-medi-
ated HMGB1 release. Inhibition of autophagy by inhibitors (e.g., 
3-methyladenine, bafilomycin A

1
 and chloroquine) or genetic 

deletion/depletion of autophagy regulators (e.g., ATG5 and 
BECN1) inhibits HMGB1 release in fibroblasts, macrophages 
and cancer cells. Moreover, autophagy regulates monosodium 
urate crystal-induced HMGB1 release by neutrophil extracellular 
traps (Fig. 2B).50,51 neutrophil extracellular traps are extracellular 
chromatin structures that entrap microbes and are composed of 
nuclear and granule constituents of neutrophils. Tanshinone IIA 
sodium sulfonate, originally derived from a well-known Chinese 
medicine used for treating cardiovascular disorders, induces clath-
rin- or caveolin-dependent endocytosis of exogenous HMGB1 
and subsequently, autophagy-dependent degradation in macro-
phages (Fig. 2C).52 In addition, epigallocatechin gallate, a major 
ingredient in green tea, inhibits HMGB1 release in macrophages 
by stimulating its autophagic degradation.53 Collectively, these 
studies suggest that autophagy may play a central role in regula-
tion of the cellular traffic, secretion and degradation of HMGB1.

ATP. ATP, the bioenergetic primary substrate or currency of 
metabolism, plays a central role intracellularly. In addition, extra-
cellular ATP regulates many biological processes including car-
diac function, neurotransmission, muscle contraction, immune 

lectin, galactoside-binding, solulble, 8 [LGALS8/galectin 8]).19 
Autophagy is a housekeeping survival mechanism that promotes 
programmed cell survival,20 with a protective function in the 
setting of stress to sustain homeostasis by maintaining cellu-
lar integrity and promoting efficient cellular function, distinct 
from apoptosis or programmed cell death. When stress sever-
ity or duration increases, however, it may promote cell death. 
The term “autophagic cell death” was first established based on 
observations of increased autophagic markers in dying cells.4,5 In 
many cases, it is agreed that this “autophagic cell death” is cell 
death with autophagy rather than cell death by autophagy.21,22 
Autophagy is involved in the regulation of diverse biological pro-
cesses, including development, differentiation, cell cycle progres-
sion, cell death, immunity, inflammation and metabolism, and 
is dysfunctional in several diseases.23-30 Thus, the accurate and 
facile identification and quantification of autophagy is necessary 
to make progress in this rapidly developing field.31,32

DAMPs: Endogenous Molecules Released  
by Stressed Cells

The immune system is composed of a network of cells, tissues 
and organs that work together to recognize tissue stress, damage 
and pathogens often portrayed as “non-self/stranger” or “dam-
aged self/danger” signals. Charles Janeway, Jr. predicted the 
first exogenous signal in 1989, which we now term collectively 
“pathogen-associated molecular pattern” (PAMP) molecules.33 
Polly Matzinger predicted the latter endogenous form in 1994, 
which we now term “damage-associated molecular pattern” 
(DAMP)34,35 molecules. Most DAMPs are nuclear or cytosolic 
proteins, including the chromatin-associated high mobility 
group box 1 (HMGB1), the S100 family of calcium-binding pro-
teins, heat shock proteins, interleukin 1 (IL1) family members 
(e.g., IL1A and IL33), and histones.36 Examples of nonprotein 
DAMPs include adenosine triphosphate (ATP), DNA, RNA, 
uric acid, hyaluronan and heparin sulfate.36 Increasing evidence 
suggests that mitochondria are an important source of DAMPs 
(e.g., mitochondrial DNA and transcription factor A, mitochon-
drial/TFAM, a structural and functional homolog of HMGB1).37 
These DAMPs have well-defined functions with several common 
characteristics: (1) they are passively leaked from injured or dying 
cells or the surrounding tissue matrix; (2) they can be actively 
secreted by immune cells through various nonclassical pathways; 
(3) their biological activities are mediated by interaction with 
polygamous pattern recognition receptors including toll-like 
receptors and the advanced glycosylation end product-specific 
receptor (AGER/RAGE), or post-translational modification such 
as redox modulation; (4) they serve as so-called “signal 0’s” to 
promote immune and stress responses to restore homeostasis; and 
(5) excessive levels of DAMPs may cause cell injury, limit normal 
organ function (systemic autophagic syndromes), and thereby 
promote organismal death, paradoxically in a setting of height-
ened, but excessive, programmed cell survival. Increased plasma 
levels of DAMPs are associated with several inflammatory-related 
diseases such as rheumatoid arthritis, systemic sepsis, athero-
sclerosis, hepatitis, diabetes and cancer.38,39 It is thus critical to 
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is a transmembrane protein that is a member of the soluble 
N-ethylmaleimide-sensitive factor attachment protein receptor 
(SNARE) family. Of note, SNARE proteins, which are essen-
tial for membrane fusion, are also required for formation and 
maturation of autophagosomes58,59 as well as autophagosome-
endosome/lysosome fusion,60 suggesting that the core molecular 
machinery of autophagy shares components with other traffick-
ing pathways.

IL1B. IL1B is usually considered as a mediator downstream of 
DAMPs although it has the primary characteristics of DAMPs. 
IL1B can be actively secreted by immune cells in response to exog-
enous and endogenous inflammatory stimuli or passively released 
by necrotic cells, and mediates innate and adaptive inflammatory 
responses to microbial invasion and tissue injury. The NLRP3 
inflammasome is a cytosolic protein complex regulating the 
activation of CASP1, which in turn cleaves pro-IL1B into its 
active form and promotes IL1B release. ATG16L1 is essential for 
autophagy and is implicated in the susceptibility to inflammatory 
bowel disease, being mutated in many patients with Crohn dis-
ease of the bowel. ATG16L1 suppresses IL1B release in response 
to lipopolysaccharides (LPS) in macrophages,61 suggesting an 
important role of autophagy in regulating IL1B release. The 
mechanism for this is thought to be involved in regulating pro-
IL1B for lysosomal degradation, ROS production, activation of 
the NLRP3 inflammasome and SQSTM1 stability (Fig. 2E).61-63

LPS treatment of macrophages induces the recruitment 
of IL1B to autophagosomes, and the sequestered pro-IL1B is 
degraded when autophagy is activated by treatment with rapamy-
cin.62 Moreover, the autophagic adaptor protein SQSTM1 

responses and inflammation.54 In immune cells, ATP can trig-
ger the activation of NLR family, pyrin domain containing  
3 (NLRP3) and initiate the creation of an inflammasome and sub-
sequent IL1B release in response to PAMPs (e.g., lipopolysaccha-
rides and peptidoglycan). Dying autophagic cells have the ability 
to release ATP through the purinergic receptor P2X, ligand-gated 
ion channel, 7 (P2RX7) and K+ efflux.55 During recognition and 
engulfment by macrophages, ATP release from dying autophagic 
cells can induce an acute inflammatory response through the 
NLRP3 inflammasome activation and IL1B release.55 It is not 
known, however, whether synergistic effects exist between ATP 
and other DAMPs such as HMGB1 on inflammasome activation. 
In cancer cells, autophagy is required for mitoxantrone and oxali-
platin-induced release of ATP from early transplantable tumors, 
which stimulates antitumor immune responses by recruiting DCs 
and lymphocytes (Fig. 2D).56 In contrast, loss of ATG5 or ATG7 
inhibits the release of ATP by tumor cells in response to che-
motherapy, and prevents antitumor immune responses.56 These 
findings contribute to our understanding of how cancer cells can 
be immunogenic in the hosts in which they arose.

Vesicular exocytosis contributes to ATP release, although 
the exact mechanism is unknown. A recent study indicates that 
vesicle-associated membrane protein 7 (VAMP7) is required for 
starvation-induced ATP release by the delivery and fusion of 
ATP-containing amphisomes with the cell membrane in can-
cer cells (Fig. 2D).57 VAMP7-positive vacuoles colocalize with 
autophagosomes at the focal adhesion sites upon starvation, 
and microtubule-mediated trafficking participates in the trans-
port of these VAMP7-labeled autophagic vesicles.57 VAMP7 

Figure 2. Autophagy-mediated DAMP release and degradation. (A) Autophagy regulates HMGB1 release in a ROS-dependent manner in fibroblasts, 
macrophages and cancer cells. (B) Autophagy regulates neutrophil extracellular trap-mediated HMGB1 release in neutrophils. (C) Tanshinone IIA sodi-
um sulfonate facilitates endocytosis of exogenous HMGB1 and triggers HMGB1 degradation by autophagy in macrophages. (D) Autophagy is required 
for the release of ATP by cancer cells. (E) Autophagy as a mechanism to prevent exaggerated endotoxin-induced IL1B production in macrophages. (F) 
Autophagy promotes IL1B release through cell membrane targeted vesicular exocytosis. (G) Autophagy regulates DNA damage response by degrada-
tion of UBA2 and RRM1.
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removal of micronuclei by autophagy, namely nucleophagy, may 
contribute to genomic stability.80,81 Mitophagy, the specific auto-
phagic elimination of mitochondria, has been implicated in the 
control of mitochondrial number and quality17 and is thought 
to be critically important to prompt subsequent mitochondrial 
biogenesis. Mitochondrial DNA that escapes autophagic clear-
ance can cause systemic and cardiac inflammation as well as heart 
failure.82 Depletion of autophagic proteins (LC3B and BECN1) 
promotes the accumulation of dysfunctional mitochondria, mito-
chondrial DNA release and NLRP3 inflammasome activation in 
macrophages.83 Thus, endogenous (genomic or mitochondrial) 
DNA that escapes degradation following enhanced autophagy 
results in innate immune activation.

Autophagy Regulation by DAMPs

Heightened autophagy is rapidly and uniformly initiated follow-
ing various physiological and pathological stimuli. The mecha-
nism and regulation of autophagy is extremely complicated and 
involves multiple signaling inputs. Recent studies suggest that 
DAMPs, including HMGB1 and ATP, are powerful autophagic 
stimuli and regulators. Exogenous HMGB1 and ATP promote 
autophagy in cancer and immune cells.52,84-86 ATP induces 
P2RX7-dependent autophagy in monocytes/macrophages and 
microglial cells, which contributes to the elimination of intracel-
lular mycobacteria85 and release of autophagolysosomes/phagoly-
sosomes into the extracellular space.86 In addition, the autophagy 
inhibitor 3-MA has an inhibitory effect on the ATP-dependent 
release of IL1B in peripheral blood mononuclear cells,87 suggest-
ing that autophagy regulates ATP-induced inflammasome activa-
tion and cytokine production.

The mechanism of HMGB1-mediated autophagy has been 
well studied. The activity of HMGB1 in immunity, inflamma-
tion and autophagy depends on its redox status and expression of 
several cognate receptors.88 Reduced HMGB1 protein promotes 
autophagy in an AGER/RAGE-dependent fashion, whereas oxi-
dized HMGB1 promotes apoptosis with activation of CASP3.54,55 
Cytoplasmic HMGB1 is a BECN1-binding protein, which sus-
tains BECN1-PtdIns3K complex activation during autophagy 
induction.46 Tumor protein p53 (TP53) and unc-51-like kinase 
1 (ULK1) have opposing roles in regulation of HMGB1-BECN1 
complex formation in cancer cells.89,90 Nuclear HMGB1 regulates 
expression of heat shock 27kDa protein 1 (HSPB1/HSP27).91 As 
a cytoskeleton regulator, HSPB1 is critical for dynamic intracel-
lular trafficking during autophagy and mitophagy. Loss of either 
HMGB1 or HSPB1 produces phenotypes similar to those char-
acterized by mitochondrial fragmentation with decreased aerobic 
respiration and ATP production.91 Both intracellular and extra-
cellular HMGB1-mediated autophagy promote chemoresistance 
in several cancer cell types, including colon cancer, pancreatic 
cancer and leukemia.89,90,92

Concluding Remarks and Perspective

Cells have evolved several critically important strategies, such as 
induction of heightened autophagy promoted by DAMP release, 

directly delivers ubiquitinated inflammasomes to complete their 
degradation in autophagosomes.64 In contrast, inhibition of auto-
phagy by 3-methyladenine (3-MA) induces activation of the 
NLRP3 inflammasome, and knockout of NLRP3 in bone mar-
row-derived DCs decreases IL1B release in response to LPS and 
3-MA.62 ROS are essential secondary messengers in induction of 
NLRP3 inflammasome activation. Autophagy is an important 
regulator of intracellular ROS generation by controlling mito-
chondrial quality.65 ATG16L1-deficient macrophages generate 
higher levels of ROS and IL1B release in response to LPS,61 and 
ROS scavengers prevent 3-MA-induced inflammasome activa-
tion.62 In addition to its role in autophagy, SQSTM1 acts as a pos-
itive regulator of IL1B release by inducing nuclear factor of kappa 
light polypeptide gene enhancer in B-cells (NFKB) activation. A 
recent study indicates that ATG16L1 suppresses IL1B release by 
promoting degradation of SQSTM1 via CUL3/cullin 3-medi-
ated proteasomal and autolysosomal degradation.63 In aggregate, 
these studies suggest that autophagy suppresses IL1B release at 
multiple levels. Interestingly, the autophagy-based unconven-
tional secretory pathway, namely autosecretion, is required for 
PAMP-induced IL1B release in the setting of starvation (Fig. 
2F).48 Loss of ATG5 inhibits starvation-induced IL1B release, 
thus requiring Golgi reassembly stacking protein (GRASP) para-
logs GORASP2 or RAB8A.48 Thus, autophagy plays a dual role 
in regulation of IL1B release in a context-dependent fashion. In 
addition, autophagy regulates release of IL1A and IL18 in sev-
eral cell types, although the underlying mechanism remains to 
be clarified.66

Microtubule-associated protein 1 light chain 3 (LC3)-
associated phagocytosis (LAP) is a newly discovered autophagic-
phagocytosis “hybrid” process that utilizes a single-membrane 
structure.19,67 LAP plays a role in the regulation of the immune 
response and promotes degradation of phagocytosed cellular 
corpses.67,68 Macrophages lacking LAP due to inhibition of indi-
vidual elements of the classical autophagy pathway (e.g., BECN1, 
ATG5, and ATG7) increase IL1B production following engulf-
ment.68 It remains unknown, however, whether the effect of 
inhibiting individual autophagy genes is due to a failure in con-
ventional autophagy rather than in LAP per se.

DNA. Leakage of nuclear and mitochondrial DNA into the 
bloodstream during cell damage can activate the immune system 
and result in a variety of diseases including multiorgan dysfunc-
tion and failure in response to sepsis or trauma, neurodegenerative 
diseases, diabetes, cancer and aging.69-71 DNA damage induces 
poly (ADP-ribose) polymerase 1 (PARP1)-dependent autophagy 
in the setting of oxidative stress, chemotherapy and irradia-
tion.72-74 Autophagy regulates the DNA damage response at mul-
tiple levels. Ubiquitin-like modifier activating enzyme 2 (UBA2/
SAE2, a protein involved in repairing meiotic and mitotic dou-
ble-strand breaks in DNA)75 and ribonucleotide reductase M1 
(RRM1/RNR1, an enzyme that catalyzes the formation of deoxy-
ribonucleotides needed for DNA replication and repair)76 can be 
directly degraded via autophagy (Fig. 2G). Moreover, deficiency 
of autophagic genes, including ATG777 and BECN1,78 and UV 
radiation resistance associated gene (UVRAG),79 increases DNA 
damage, genome instability and tumorigenesis. In addition, 
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not fully understood and are the focus of continued research. 
Understanding the mechanisms of DAMPs and autophagy at 
the molecular level will provide deeper insights into various dis-
ease processes and suggest the development of novel therapeutic 
strategies.
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as defense mechanisms to respond to stressful conditions and 
sustain survival in hostile environments. The crosstalk between 
autophagy and DAMP release, in the setting of cell stress has 
been characterized. The autophagic machinery regulates DAMP 
release and degradation, contributing to the inflammatory 
response and subsequent immunity. Interestingly, DAMPs can 
also induce autophagy, contributing to chemoresistance and 
enhanced viral and bacterial removal. In general, autophagy is 
used to engulf nonspecific components, but it can also selectively 
degrade damaged organelles or invasive pathogens. Autophagy is 
regarded as a carefully regulated ATG-dependent process, char-
acterized by specific morphological and biochemical features in 
which LC3 turnover plays a central role. Although many of the 
key autophagic proteins that are activated or inactivated in the 
autophagic pathways have been identified, the molecular mecha-
nisms of action or activation/modification of these proteins are 
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